СЕРТИФІКАЦІЙНА РОБОТА 3 XIMIÏ

Час виконання -150 хвилин
Робота складається з 50 завдань різних форм. Відповіді до завдань Ви маєте позначити в бланку A.
Результат виконання завдань сертифікаційної роботи буде зараховано як результат державної підсумкової атестації та використано під час прийому до вищих навчальних закладів.

Інструкція щодо роботи в зошиті

1. Правила виконання зазначені перед завданнями кожної нової форми.
2. Відповідайте лише після того, як Ви уважно прочитали та зрозуміли завдання.
3. У разі необхідності використовуйте як чернетку вільні від тексту місця в зошиті.
4. Намагайтеся виконати всі завдання.
5. Ви можете скористатися таблицями: «Періодична система хімічних елементів Д. І. Менделєєва», «Розчинність основ, кислот, амфотерних гідроксидів і солей у воді», «Ряд активності металів», що наведені на сторінках $2,15,16$ цього зошита.

Інструкція щодо заповнення бланка відповідей \boldsymbol{A}

1. у бланку \boldsymbol{A} записуйте лише правильні, на Вашу думку, відповіді.
2. Відповіді вписуйте чітко, дотримуючись вимог інструкції до кожної форми завдань.
3. Неправильно позначені, підчищені відповіді вважатимуться помилкою.
4. Якщо Ви позначили відповідь до якогось із завдань $1-42$ неправильно, то можете виправити її, замалювавши попередню позначку та поставивши нову, як показано на зразку:

5. Якщо Ви записали відповідь до якогось із завдань 43-50 неправильно, то можете виправити їі, записавши новий варіант відповіді в спеціально відведеному місці бланка A.
6. Ваш результат залежатиме від загальної кількості правильних відповідей, зазначених у бланку \boldsymbol{A}.
Ознайомившись з інструкціями, перевірте якість друку зошита та кількість сторінок. Їх має бути 16.
Позначте номер Вашого зошита у відповідному місці бланка \boldsymbol{A} так:

Бажаємо Вам успіху!

1. Періодична система хімічних елементів Д. I. Менделєєва (коротка форма)

Завдання 1-34 мають по чотири варіанти відповіді, з яких лише один правильний. Виберіть правильний, на Вашу думку, варіант відповіді, позначте його в бланку A згідно з інструкцією. Не робіть інших позначок у бланку A, тому що комп'ютерна програма ресструватиме їх як ПОМИЛКИ!

Будьте особливо уважні, заповнюючи бланк A !
Не погіршуйте власноручно свого результату неправильною формою запису відповідей

1. Укажіть формулу органічної речовини, у молекулі якої таке співвідношення числа атомів: $\mathrm{N}(\mathrm{C}): \mathrm{N}(\mathrm{H}): \mathrm{N}(\mathrm{O})=1: 2: 1$.
A $\mathrm{CH}_{3} \mathrm{OH}$
b $\mathrm{CH}_{3} \mathrm{COOH}$
B $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
「 $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
2. Укажіть пару йонів з однаковою електронною конфігурацією.

A $\mathrm{Mg}^{2+} \mathrm{i} \mathrm{F}^{-}$
b $\mathrm{Na}^{+} \mathrm{i} \mathrm{Cl}^{-}$
B $\mathrm{Be}^{2+} \mathrm{i} \mathrm{F}^{-}$
Г $\mathrm{Li}^{+} \mathrm{i} \mathrm{Cl}^{-}$
3. Проаналізуйте твердження.
I. Радіус атома Сульфуру більший за радіус атома Оксигену.
II. У ядрі нукліда ${ }^{21} \mathrm{Ne}$ однакове число протонів і нейтронів.
III. В атомі Хлору стільки само енергетичних рівнів, як і в атомі Брому.
IV. Електронегативність Нітрогену більша за електронегативність Фосфору.

Правильні з-поміж них лише
A I, III
B I, IV
B II, III
「 II, IV
4. Укажіть формулу речовини, хімічні зв'язки в молекулі якої більш полярні порівняно зі зв'язками в молекулах інших речовин, формули яких наведено.
A CCl_{4}
B CH_{4}
B CF_{4}
Г $\quad \mathrm{CS}_{2}$
5. За певних умов унаслідок взаємодії літію з воднем утворюється літій гідрид, формула якого LiH . Температура плавлення літій гідриду становить $692{ }^{\circ} \mathrm{C}$, його розплав добре проводить електричний струм. Укажіть тип кристалічних граток літій гідриду.

А молекулярні
Б металічні
В атомні
Г йонні
6. У порцелянову чашку помістили грудочку свіжодобутого негашеного вапна, до якого добавляли невеликими порціями воду. Унаслідок цього відбулася бурхлива реакція, частина води перетворилася на пару. Взаємодія негашеного вапна з водою - це реакція

А сполучення, екзотермічна
Б заміщення, ендотермічна
B заміщення, екзотермічна
Г сполучення, ендотермічна
7. У промисловості видалення домішок Арсену з чорнового свинцю грунтується на хімічній реакції, схема якої $\mathrm{As}+\mathrm{NaOH}+\mathrm{NaNO}_{3} \rightarrow \mathrm{Na}_{3} \mathrm{AsO}_{4}+\mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O}$. У цій реакції Натрій

A лише окиснюеться
Б лише відновлюється
В не змінює ступінь окиснення
Г і окиснюється, і відновлюється
8. У лабораторії витісненням води збирають газ, формула якого

A NO_{2}
B $\quad \mathrm{CH}_{4}$
B NH_{3}
「 HBr
9. Які речовини не реагують між собою у водному розчині?

A $\mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{i} \mathrm{Na}_{2} \mathrm{SiO}_{3}$
b $\mathrm{H}_{2} \mathrm{SO}_{4}$ i $\mathrm{Na}_{2} \mathrm{CO}_{3}$
B $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ i KCl
「 AgNO_{3} i KCl
10. Який з оксидів є несолетворним?

А нітроген(I) оксид
Б фосфор(V) оксид
В магній оксид
Г літій оксид
11. Правильне твердження щодо калій гідроксиду наведено в рядку

А у його водному розчині фенолфталеїн залишається безбарвним
Б утворюється внаслідок взаємодії металу з водою
В має молекулярні кристалічні ґратки
Г слабкий електроліт
12. Газ виділяється внаслідок добавляння хлоридної кислоти до розчину

A натрій силікату
Б калій карбонату
B магній сульфату
Г аргентум(I) нітрату
13. Укажіть формулу солі, термічне розкладання якої є окисно-відновною реакцією.

A NaHCO_{3}
b CaCO_{3}
B NaNO_{3}
「 $\mathrm{NH}_{4} \mathrm{Cl}$
14. Визначте формули речовин \mathbf{X} і \mathbf{Y} у схемі перетворень

$$
\mathrm{Zn}(\mathrm{OH})_{2} \xrightarrow{+\mathbf{X}}\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]^{2-} \xrightarrow{+\mathbf{Y}} \mathrm{Zn}^{2+}
$$

	\mathbf{X}	\mathbf{Y}
A	$\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{Ba}(\mathrm{OH})_{2}$
B	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$
B	$\mathrm{Ba}(\mathrm{OH})_{2}$	NaOH
$\boldsymbol{\Gamma}$	NaOH	$\mathrm{H}_{2} \mathrm{SO}_{4}$

15. Під час дослідження якісного складу речовини в лабораторії провели пробу на забарвлення полум'я - воно набуло характерного жовтого кольору. Виявили, що ця речовина реагує з хлоридною кислотою з виділенням газу. Цей самий газ утворюється внаслідок нагрівання речовини. Її формула -

A $\mathrm{K}_{3} \mathrm{PO}_{4}$
b $\mathrm{K}_{2} \mathrm{CO}_{3}$
B $\mathrm{Na}_{2} \mathrm{SiO}_{3}$
I NaHCO_{3}
16. У якому випадку метал реагує із сіллю у водному розчині?

A Cu i SnCl_{2}
B $\mathrm{Fe} \mathrm{i} \mathrm{CuSO}_{4}$
B Cu i CdSO_{4}
「 Fe i MgCl_{2}

17．Унаслідок кип＇ятіння твердої води на внутрішніх стінках чайника утворився накип．Це явище зумовлене парою йонів，формули яких наведено в рядку
A $\mathrm{Ca}^{2+}, \mathrm{HCO}_{3}^{-}$
b $\mathrm{Na}^{+}, \mathrm{HCO}_{3}^{-}$
B $\mathrm{Ca}^{2+}, \mathrm{SO}_{4}^{2-}$
I $\mathrm{Na}^{+}, \mathrm{SO}_{4}^{2-}$

18．Проаналізуйте твердження．
I．Алюміній належить до d－елементів．
II．Алюміній гідроксид за нагрівання розкладається．
III．У йона Al^{3+} така сама електронна конфігурація，як і в атома Аргону．
IV．Для добування водню в лабораторії можна використати алюмінієву стружку й хлоридну кислоту．

Правильні з－поміж них лише
A I，III
B I，IV
B II，III
「 II，IV

19．Формули речовин，у реакції між якими Ферум є окисником，наведено в рядку
A $\mathrm{FeS}_{2} \mathrm{i} \mathrm{O}_{2}$
b FeO i CO
B FeCl_{2} i Cl_{2}
「 $\quad \mathrm{FeSO}_{4}$ i KOH

20．Який газ добувають у спосіб，схематично зображений на рисунку？
A H_{2}
B Cl_{2}
B HCl
「 $\quad \mathrm{H}_{2} \mathrm{~S}$

21．Укажіть формули солей，аніони яких можуть виявляти відновні властивості．
$1 \mathrm{Na}_{2} \mathrm{CO}_{3}$
$2 \quad \mathrm{Na}_{2} \mathrm{SO}_{3}$
$3 \mathrm{NaNO}_{3}$
$4 \quad \mathrm{Na}_{2} \mathrm{~S}$
Варіанти відповіді：
A 1， 3
B 1,4
B 2,3
「 2， 4
22. Фосфор(V) оксид не можна використовувати для видалення домішок водяної пари з газу, формула якого
A N_{2}
B O_{2}
B NH_{3}
「 $\quad \mathrm{CO}_{2}$
23. У хімічній реакції, схема якої $\mathrm{SiO}_{2}+\mathrm{NH}_{4} \mathrm{~F} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SiF}_{6}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$,

A ступінь окиснення Нітрогену змінився, а Флуору - ні
Б ступінь окиснення Флуору змінився, а Нітрогену - ні
В ступінь окиснення Нітрогену змінився, а Гідрогену - ні
Г ступінь окиснення жодного з хімічних елементів не змінився
24. Укажіть назву за номенклатурою IUPAC речовини, структурна формула якої

А 4-метилгекс-1-ин
Б 3 -метилгекс-5-ин
B 4 -етилпент-1-ин
Г 2-етилпент-4-ин

25. Проаналізуйте твердження. Чи є поміж них правильні?
I. Алкани лінійної будови мають меншу детонаційну стійкість, ніж алкани розгалуженої будови.
II. Перегонка нафти ґрунтується на тому, що окремі її фракції мають різні інтервали температур кипіння.

A правильне лише I
Б правильне лише II
В обидва правильні
Г немає правильних
26. Каталітичне гідрування пропену належить до реакцій

A заміщення
Б приєднання
В ізомеризації
Г відщеплення
27. Етин відрізняється від етену тим, що

A за нормальних умов є газом
Б належить до ненасичених вуглеводнів
B реагує з водним розчином калій перманганату
Г реагує з амоніачним розчином аргентум(I) оксиду
28. Толуен і бензен належать до одного гомологічного ряду, й обидва реагують з хлором за освітлення. Укажіть типи хімічних реакцій 1 і 2.

Рівняння реакції 1 :

Рівняння реакції 2:

A 1 - приєднання, 2 - заміщення
Б 1 -заміщення, 2 - приєднання
В 1 - приєднання, 2 - відщеплення
Г 1 - заміщення, 2 - відщеплення
29. Правильне твердження щодо фенолу наведено в рядку

A належить до ненасичених спиртів
Б добувають відновленням нітробензену
B реагує з розчином натрій гідрогенкарбонату
Г реагує з розчином натрій гідроксиду
30. Визначте формулу речовини \mathbf{X} у рівнянні реакції

$$
\mathbf{X}+4 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

A $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
b $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$
B $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}^{=}{ }_{\mathrm{H}}^{\mathrm{O}}$
「

31. Унаслідок кислотного гідролізу речовини, структурну формулу якої наведено, утворюється

А метанова кислота й 2-метилпропан-1-ол
Б 2 -метилпропанова кислота й метанол
В метанова кислота й бутан-1-ол
Г бутанова кислота й метанол

32. Правильне твердження щодо вуглеводів наведено в рядку

A целюлоза добре розчиняється у воді
Б сахароза - продукт повного гідролізу крохмалю
В глюкоза та фруктоза мають різний хімічний склад
Г крохмаль реагує з водно-спиртовим розчином йоду
33. До розчину білка добавили концентровану нітратну кислоту. Відбулася денатурація білка, реакційна суміш набула жовтого кольору. Поява забарвлення свідчить про те, що в молекулі білка є залишки амінокислоти, формула якої

A	B	B	Γ

34. Укажіть правильні твердження щодо речовин I-IV, структурні формули яких наведено.

I	II	III	IV
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$	$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$		

1 формулі I можуть відповідати дві сполуки - иис-і транс-ізомер
2 речовини I i II належать до ненасичених вуглеводнів
3 речовини I і III вступають у реакцію полімеризації
4 речовина IV окиснюється легше, ніж речовина I
Варіанти відповіді:
A 1,3
B 1,4
B 2,3
「 2, 4

У завданнях 35-40 до кожного з чотирьох рядків інформації, позначених ЦИФРАМИ, доберіть один правильний, на Вашу думку, варіант, позначений БУКВОЮ. Поставте позначки в таблицях відповідей до завдань у бланку A на перетині відповідних рядків (цифри) і колонок (букви). Усі інші види Вашого запису в бланку A комп’ютерна програма реєструватиме як ПОМИЛКИ!

Будьте особливо уважні, заповнюючи бланк A !
Не погіршуйте власноручно свого результату неправильною формою запису відповідей
35. Установіть відповідність між схемою процесу відновлення та числом електронів, що беруть участь у ньому.

Схема процесу відновлення

$1 \mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}$
$2 \quad \mathrm{SO}_{4}^{2-} \rightarrow \mathrm{H}_{2} \mathrm{~S}$
$3 \mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}$
$4 \mathrm{MnO}_{4}^{2-} \rightarrow \mathrm{Mn}(\mathrm{OH})_{4}$

Число електронів

A 2
B 3
B 5
Г 6
Д 8

36. Установіть відповідність між типом хімічної реакції та характеристикою її неорганічних реагентів або продуктів.

Tип хімічної реакиіі
1 сполучення
2 заміщення
3 розкладу
4 обміну

Характеристика реагентів або продуктів
A продукт - одна складна речовина
Б продукти й реагенти - дві складні речовини
В продукти й реагенти - дві прості речовини
Г продукти й реагенти - проста й складна речовини
Д реагент - одна складна речовина
37. Установіть відповідність між класом органічних сполук та формулою речовини, яка до нього належить.

Клас органічних сполук

1 альдегіди
2 спирти
3 естери
4 етери

Формула речовини

A $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
b $\mathrm{CH}_{3} \mathrm{COOH}$
B $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
r $\mathrm{CH}_{3} \mathrm{OH}$
Д НСНО

38. Установіть відповідність між схемою перетворення та типом хімічної реакції.

Схема перетворення
Tип хімічної реакиії
1 етанол \rightarrow етен
2 пропен \rightarrow пропан
3 бензен \rightarrow хлоробензен
4 пентан $\rightarrow 2$-метилбутан

А заміщення
Б приєднання
В ізомеризації
Г відщеплення
Д повного окиснення

39. Установіть відповідність між природою карбонової кислоти та її структурною формулою.

Природа карбонової кислоти
1 одноосновна ароматична 2 одноосновна насичена 3 двохосновна ароматична 4 двохосновна насичена

Структурна форлула карбонової кислоти

A

Б

B

「

Д

40. Установіть відповідність між хімічною реакцією та її продуктами.

Хімічна реакиія

1 гідратація етену
2 гідратація етину
3 ізомеризація бутану
4 повне окиснення бутану

Продукти хімічної реакиї
A CO_{2} i $\mathrm{H}_{2} \mathrm{O}$
Б $\mathrm{CH}_{3}-\mathrm{C} \stackrel{=}{=}$
B $\quad \mathrm{CH}_{3}-\mathrm{C} \stackrel{\mathrm{C}}{\stackrel{\mathrm{O}}{\mathrm{OH}}}$
$\begin{array}{cc}\text { r } & \mathrm{CH}_{3}-\underset{\mid}{\mathrm{CH}}-\mathrm{CH}_{3} \\ & \mathrm{CH}_{3} \\ \text { Д } & \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}\end{array}$

1
1
3
4
А Б В Г Д

У завданнях 41, 42 розташуйте факти (явища, процеси тощо) у правильній послідовності. Поставте позначки в таблицях відповідей до завдань у бланку A на перетині відповідних рядків (цифри) і колонок (букви). Цифрі 1 має відповідати вибраний Вами перший факт, цифрі 2 - другий, цифрі 3 - третій, цифрі 4 - четвертий. Усі інші види Вашого запису в бланку A комп'ютерна програма реєструватиме як ПОМИЛКИ!

Будьте особливо уважні, заповнюючи бланк A !
Не погіршуйте власноручно свого результату неправильною формою запису відповідей
41. Розташуйте хімічні формули за збільшенням кількості речовини (моль) у їхніх порціях масою 180 г.

A FeS_{2}
Б FeO
B SO_{3}
「 $\mathrm{H}_{2} \mathrm{O}$

42. Розташуйте за зростанням температури кипіння карбонові кислоти, назви яких наведено. Візьміть до уваги закономірності зміни температури кипіння насичених одноосновних карбонових кислот. Зокрема, у карбонових кислот з однаковим числом атомів Карбону в молекулі температура кипіння зменшується зі збільшенням розгалуженості карбонового ланцюга.

A гексанова кислота
Б пентанова кислота
В 3-метилбутанова кислота
Г 2,2-диметилпропанова кислота

Виконайте завдання 43-50. Одержані числові відповіді запишіть у зошиті та бланку A. Увага! Значення відносних атомних мас хімічних елементів під час обчислень округлюйте до ЦІЛИХ.
43. Обчисліть відносну молекулярну масу газу, відносна густина якого за киснем дорівнює 2.

Відповідь: \qquad
44. Маса суміші гелію з киснем становить 24 г, а аї об’єм - 56 л (н. у.). Обчисліть об’ємну частку (\%) кисню в суміші.
\qquad
45. Унаслідок поглинання сульфур(VI) оксиду розчином масою 100 кг з масовою часткою сульфатної кислоти 91 \% одержали безводну кислоту. Обчисліть масу (кг) поглинутого сульфур(VI) оксиду.

Відповідь: \qquad
46. Вуглець масою 15 г повністю спалили. Карбон(IV) оксид, що утворився, пропустили крізь вапняну воду, узяту в надлишку.

1. Обчисліть об’єм (л) карбон(IV) оксиду (н. у.).

Відповідь: \qquad
2. Обчисліть масу (г) осаду, що утворився.

Відповідь: \qquad
47. Продукти повного окиснення вуглеводню кількістю речовини 0,5 моль карбон(IV) оксид об'ємом 22,4 л (н. у.) і вода масою 27 г.

1. Виведіть молекулярну формулу вуглеводню. У відповіді запишіть число, що дорівнює сумі індексів у виведеній формулі.

Відповідь: \qquad
2. Обчисліть масу (г) вуглеводню, який окиснили.

Відповідь: \qquad
48. У промисловості силіцій добувають відновленням коксом силіцій(IV) оксиду головного складника кварцового піску. Цей процес відбувається за схемою $\mathrm{SiO}_{2}+\mathrm{C} \rightarrow \mathrm{Si}+\mathrm{CO}$. Обчисліть масу (кг) силіцію, який можна добути з кварцового піску масою 50 кг з масовою часткою силіцій(IV) оксиду 90%.

Відповідь: \qquad
49. Використовуючи метод електронного балансу, перетворіть схему реакції

$$
\mathrm{MnO}_{2}+\mathrm{PbO}_{2}+\mathrm{HNO}_{3} \rightarrow \mathrm{HMnO}_{4}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}
$$

на хімічне рівняння й укажіть коефіцієнт перед формулою окисника.

Відповідь: \qquad
50. До суміші масою 20 г, що складається з порошків магнію та заліза, добавили хлоридну кислоту, узяту в надлишку. Унаслідок цього виділився водень кількістю речовини 0,5 моль. Обчисліть масову частку (\%) заліза в суміші.

Відповідь: \qquad
2. Періодична система хімічних елементів Д. І. Менделєєва (довга форма)

E	Групи елементів																	
合	Ia	IIa	IIIb	IVb	Vb	VIb	VIIb	VIIIb			Ib	IIb	IIIa	IVa	Va	VIa	VIIa	VIIIa
$\underline{1}$	$\begin{array}{rr} \text { H } & \mathbf{1} \\ 1,0079 \end{array}$																$\begin{aligned} & \mathbf{1} \quad \mathbf{H} \\ & 1,0079 \end{aligned}$	$\begin{aligned} & 2 \quad \mathrm{He} \\ & 4,0026 \end{aligned}$
$\underline{2}$	$\begin{array}{rr} \mathrm{Li} & 3 \\ 6,941 \end{array}$	$\begin{array}{r} \text { Be } 4 \\ 9,012 \end{array}$											$\begin{aligned} & \text { B } \quad 5 \\ & 10,81 \end{aligned}$	$\begin{array}{rr} \text { C } & 6 \\ 12,011 \end{array}$	$\begin{array}{lr} \text { N } & 7 \\ 14,0067 \end{array}$	$\begin{array}{rr} 0 & 8 \\ 15,999 \end{array}$	$\begin{array}{rr} \text { F } & 9 \\ 18,998 \end{array}$	$\begin{array}{r} \text { Ne } 10 \\ 20,180 \end{array}$
$\underline{3}$	$\begin{array}{r} \mathrm{Na} 11 \\ 22,990 \end{array}$	$\begin{array}{r} \mathrm{Mg} 12 \\ 24,305 \end{array}$											$\begin{array}{r} \text { Al } 13 \\ 26,982 \end{array}$	$\begin{array}{r} \text { Si } \quad \mathbf{1 4} \\ 28,086 \end{array}$	$\begin{array}{r} \text { P } \quad 15 \\ 30,974 \end{array}$	$\begin{array}{r} \text { S } \quad \mathbf{1 6} \\ 32,06 \end{array}$	$\begin{array}{rr} \text { Cl } & 17 \\ 35,453 \end{array}$	$\begin{array}{r} \text { Ar } 18 \\ 39,948 \end{array}$
4	$\begin{array}{r} \text { K } \quad 19 \\ 39,098 \end{array}$	$\begin{array}{r} \text { Ca } 20 \\ 40,08 \end{array}$	Sc 21 44,956	$\begin{array}{r} \text { Ti } 22 \\ 47,87 \end{array}$	$\begin{array}{r} \text { V } \quad 23 \\ 50,941 \end{array}$	$\begin{array}{r} \text { Cr } 24 \\ 51,996 \end{array}$	$\begin{array}{r} \text { Mn } 25 \\ 54,938 \end{array}$	$\begin{array}{r} \mathrm{Fe} 26 \\ 55,845 \end{array}$	$\begin{array}{r} \text { Co } 27 \\ 58,933 \end{array}$	$\begin{array}{r} \mathrm{Ni} \quad 28 \\ 58,69 \end{array}$	$\begin{aligned} & 29 \mathrm{Cu} \\ & 63,546 \end{aligned}$	$\begin{aligned} & 30 \mathrm{Zn} \\ & 65,41 \end{aligned}$	$\begin{array}{r} \text { Ga } 31 \\ 69,72 \end{array}$	$\begin{array}{r} \text { Ge } 32 \\ 72,64 \end{array}$	$\begin{array}{r} \text { As } 33 \\ 74,922 \end{array}$	$\begin{array}{r} \text { Se } 34 \\ 78,96 \end{array}$	$\begin{array}{r} \mathrm{Br} 35 \\ 79,904 \end{array}$	$\begin{array}{r} \mathrm{Kr} 36 \\ 83,80 \end{array}$
$\underline{5}$	$\begin{array}{r} \text { Rb } 37 \\ 85,468 \end{array}$	$\begin{array}{r} \text { Sr } 38 \\ 87,62 \end{array}$	$\begin{array}{cc} \text { Y } \quad 39 \\ 88,906 \end{array}$	$\begin{array}{r} \mathrm{Zr} \mathbf{4 0} \\ 91,22 \end{array}$	$\begin{array}{r} \mathrm{Nb} 41 \\ 92,906 \end{array}$	$\begin{array}{r} \text { Mo } 42 \\ 95,94 \end{array}$	$\text { Tc } \begin{array}{r} 43 \\ {[98]} \end{array}$	$\begin{array}{r} \text { Ru } 44 \\ 101,07 \end{array}$	Rh 45 102,905	Pd 46 106,4	$\begin{aligned} & 47 \mathrm{Ag} \\ & 107,868 \end{aligned}$	$\begin{aligned} & 48 \mathrm{Cd} \\ & 112,41 \end{aligned}$	$\begin{array}{r} \text { In } 49 \\ 114,82 \end{array}$	$\begin{array}{r} \text { Sn } 50 \\ 118,71 \end{array}$	$\begin{array}{r} \text { Sb } 51 \\ 121,76 \end{array}$	$\begin{array}{r} \mathrm{Te} 52 \\ 127,60 \end{array}$	$\begin{array}{lr} \text { I } & 53 \\ 126,904 \end{array}$	Xe 54 131,29
$\underline{6}$	$\begin{array}{r} \text { Cs } 55 \\ 132,91 \end{array}$	$\begin{array}{r} \text { Ba } 56 \\ 137,33 \end{array}$	$\begin{gathered} \mathrm{La}^{*} 57 \\ 138,905 \end{gathered}$	$\begin{array}{r} \text { Hf } 72 \\ 178,49 \end{array}$	Ta 73 180,948	$\begin{array}{r} \text { W } 74 \\ 183,84 \end{array}$	Re 75 186,207	$\begin{array}{r} \text { Os } 76 \\ 190,2 \end{array}$	$\begin{gathered} \text { Ir } \quad 77 \\ 192,22 \end{gathered}$	$\begin{array}{r} \text { Pt } 78 \\ 195,09 \end{array}$	$\begin{aligned} & 79 \mathbf{A u} \\ & 196,967 \end{aligned}$	$\begin{aligned} & 80 \mathrm{Hg} \\ & 200,59 \end{aligned}$	$\begin{array}{r} \text { Tl } 81 \\ 204,38 \end{array}$	$\begin{array}{r} \text { Pb } 82 \\ 207,2 \end{array}$	$\begin{aligned} & \mathrm{Bi} \quad 83 \\ & 208,980 \end{aligned}$	$\begin{array}{r} \text { Po } 84 \\ {[209]} \end{array}$	$\begin{array}{r} \text { At } 85 \\ {[210]} \end{array}$	Rn 86 [222]
7	$\begin{array}{r} \text { Fr } \\ {[223]} \end{array}$	$\begin{array}{r} \text { Ra } 88 \\ {[226]} \end{array}$	$\begin{array}{r} \mathbf{A c}^{+\# 8} 89 \\ {[227]} \end{array}$	$\begin{array}{r} \text { Rf } 104 \\ {[261]} \end{array}$	$\begin{aligned} \text { Db } & 105 \\ & {[262] } \end{aligned}$	$\begin{array}{\|c} \text { Sg } \\ {[266]} \\ {[266]} \end{array}$	$\begin{array}{rr} \text { Bh } & 107 \\ {[264]} \end{array}$	$\text { Hs } \begin{array}{r} 108 \\ {[267]} \end{array}$	$\begin{array}{r} \text { Mt } \\ \quad 109 \\ {[268]} \end{array}$	$\text { Ds } \begin{array}{r} 110 \\ {[271]} \end{array}$	$\begin{aligned} & 111 \mathrm{Rg} \\ & {[272]} \end{aligned}$	112 Cn	$\text { UUt }^{113}$	114 Fl	$\text { UUp }^{115}$	$116 \mathrm{Lv}$	$\text { UUs }^{117}$	$\text { UUo }^{118}$

* Лантаноїди	${ }_{140,12}^{58} \quad \mathrm{Ce}$	$\begin{aligned} & 59 \quad \mathrm{Pr} \\ & 140,908 \end{aligned}$	${ }_{144,24}^{60} \mathrm{Nd}$	$\begin{aligned} & 61 \\ & {[145]} \end{aligned}$	Pm	$\begin{aligned} & 62 \\ & 150,4 \end{aligned}$	Sm	$\begin{aligned} & 63 \\ & 151,96 \end{aligned}$	Eu	$\begin{aligned} & \mathbf{6 4} \\ & 157,25 \end{aligned}$		$\begin{aligned} & 65 \\ & 158,925 \end{aligned}$	Tb	66 $162,50$		$\begin{aligned} & 67 \\ & 164,93 \end{aligned}$		${ }_{167,26}^{68} \quad \mathrm{Er}$	$\begin{aligned} & 69 \\ & 168,93 \end{aligned}$	Tm	$\begin{aligned} & 70 \\ & 173,04 \end{aligned}$	Yb	$\begin{aligned} & 71 \\ & 174,97 \end{aligned}$	Lu
** Актиноїди	$\begin{aligned} & 90 \quad \text { Th } \\ & 232,038 \end{aligned}$	$\begin{array}{ll} 91 & \mathrm{~Pa} \\ {[231]} \end{array}$	$\begin{aligned} & 92 \quad \mathrm{U} \\ & 238,029 \end{aligned}$	$\begin{aligned} & 93 \\ & {[237]} \end{aligned}$		$\begin{aligned} & 94 \\ & {[244]} \end{aligned}$		$\begin{aligned} & 95 \\ & {[243]} \end{aligned}$	Am	$\begin{aligned} & 96 \\ & {[247]} \end{aligned}$		$\begin{aligned} & 97 \\ & {[247]} \end{aligned}$		$\begin{aligned} & 98 \\ & {[251]} \end{aligned}$		$\begin{aligned} & \mathbf{9 9} \\ & {[252]} \end{aligned}$		$\begin{aligned} & 100 \mathrm{Fm} \\ & {[257]} \end{aligned}$	$\begin{aligned} & 101 \\ & {[258]} \end{aligned}$		$\begin{aligned} & 102 \\ & {[259]} \end{aligned}$		$\begin{aligned} & 103 \\ & {[262]} \end{aligned}$	Lr

3. Розчинність основ, кислот, амфотерних гідроксидів і солей у воді (за температури $20-2{ }^{\circ} \mathrm{C}$)

Аніони	Катіони																		
	\boldsymbol{H}^{+}	NH_{4}^{+}	$L i^{+}$	$N a^{+}$	\boldsymbol{K}^{+}	Ag ${ }^{+}$	$\boldsymbol{M g} \boldsymbol{g}^{2+}$	Ca ${ }^{2+}$	$B a^{2+}$	$Z n^{2+}$	$M n^{2+}$	$\boldsymbol{P b}{ }^{2+}$	$\boldsymbol{C u}{ }^{2+}$	$\boldsymbol{H} \boldsymbol{g}^{2+}$	$N i^{2+}$	$\boldsymbol{F} \boldsymbol{e}^{2+}$	$\boldsymbol{F} \boldsymbol{e}^{3+}$	$A l^{3+}$	Cr^{3+}
$O H^{-}$		P	P	P	P	-	M	M	P	H	H	H	H	-	H	H	H	H	H
\boldsymbol{F}^{-}	P	P	M	P	P	P	M	M	M	P	P	M	P	\#	P	M	H	M	P
$C l^{-}$	P	P	P	P	P	H	P	P	P	P	P	M	P	P	P	P	P	P	P
Br^{-}	P	P	P	P	P	H	P	P	P	P	P	M	P	M	P	P	P	P	P
\boldsymbol{I}^{-}	P	P	P	P	P	H	P	P	P	P	P	M	-	M	P	P	-	P	P
S^{2-}	P	P	P	P	P	H	\#	\#	P	H	H	H	H	H	H	H	\#	\#	\#
SO_{3}^{2-}	P	P	P	P	P	H	M	M	M	P	M	M	-	\#	M	M	-	-	-
SO_{4}^{2-}	P	P	P	P	P	M	P	M	H	P	P	M	P	P	P	P	P	P	P
NO_{3}^{-}	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
PO_{4}^{3-}	P	P	M	P	P	H	M	H	H	H	M	H	\#	\#	H	H	H	H	H
CO_{3}^{2-}	P	P	P	P	P	M	M	H	H	H	H	H	\#	-	M	H	-	-	-
$\mathrm{CH}_{3} \mathrm{COO}^{-}$	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	-	P	P

[^0]| Li |
| :---: |

[^0]: «Р» - розчинна речовина (розчинність понад 1 г речовини у 100 г води);
 «M» - малорозчинна речовина (розчинність від 1 до 0,001 г речовини у 100 г води);
 «H» - практично нерозчинна речовина (розчинність менше 0,001 г речовини у 100 г води); «一» - речовина не існує;
 «\#» - речовина існує, але реагує з водою (ïі розчинність визначити не можна).

